Charge Density Distribution Model in Self-Organizing Cloud
نویسندگان
چکیده
منابع مشابه
using game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Generative Probability Density Model in the Self-Organizing Map
The Self-Organizing Map, SOM, is a widely used tool in exploratory data analysis. A theoretical and practical challenge in the SOM has been the diffi culty to treat the method as a statistical model fitting procedure. In this chapter we give a short review of statistical approaches for the SOM. Then we present the probability density model for which the SOM training gives the maximum likeli h...
متن کاملAn Auction-driven Self-organizing Cloud Delivery Model
The three traditional cloud delivery models – IaaS, PaaS, and SaaS – constrain access to cloud resources by hiding their raw functionality and forcing us to use them indirectly via a restricted set of actions. Can we introduce a new delivery model, and, at the same time, support improved security, a higher degree of assurance, find relatively simple solutions to the hard cloud resource manageme...
متن کاملSOS Cloud: Self-organizing Services in the Cloud
Cloud computing is becoming an interesting alternative as a flexible and affordable on-demand environment for deploying custom applications in the form of services. This work proposes a bio-inspired, self-organizing solution to support the allocation and deallocation of virtual machines and the deployment of services on virtual machines in a cloud infrastructure. The goal is twofold: to meet th...
متن کاملThe Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E3S Web of Conferences
سال: 2020
ISSN: 2267-1242
DOI: 10.1051/e3sconf/202019601002